
Software Architecture
for Planetary & Lunar Robotics

Hans Utz
Research Institute for Advanced Computer Sciences at

Intelligent Robotics Group
NASA Ames Research Center

Terry Fong
Intelligent Robotics Group

NASA Ames Research Center

Issa A.D. Nesnas
Jet Propulsion Laboratory

California Institute of Technology

Overview

• The Intelligent Robotics Group
• Software architecture for space robotics
• Challenges in rover interoperability
• The CLARAty approach
• CLARAty examples:

– Locomotion framework
– Motor abstraction

• Future development
• Summary and conclusions

Intelligent Robotics Group
• Areas of expertise

– Applied computer vision
– Human-robot interaction
– Interactive 3D visualization
– Robot software architectures

• Science-driven exploration
– Survey, instrument placement, resource

mapping
– Low speed, deliberative operation

• Fieldwork-driven operations
– Assembly, inspection, maintenance
– Pre-cursor missions (site preparation,

infrastructure emplacement, etc.)
– Manned missions (human-paced

interaction, peer-to-peer assistance)

Robots and Facilities

K9

Rover lab

K10
(4x)

K11

PER
(10x)Scorpion

Amtec
Schunk

(2x)

Marscape

Moonscape

Marscape
• Outdoor rover test facility

– 3/4 acre, surveyed site
– Operations trailer
– dGPS, wireless LAN, power

• Mars analog
– Design reflects geology of

scientific interest
– Streambed, delta, lakebed,

volcano, chaotic terrain,
meteorite impact crater, etc.

– Traversable + non-traversable
regions (with occlusions)

40
m

80m

Moonscape
• Indoor rover test facility

– Human-Robot studies
• Work area

– 37 x 45 ft with hip wall
– Lunar mural & floor
– Optical motion capture

• Control room
– High-end graphics PC’s
– Plasma touchscreen

K9 Rover
• Planetary science rover

– Remote autonomous experiments
– In-situ measuements

• Characteristics
– FIDO chassis: 6-wheel steer rocker-

bogey
– 5-DOF instrument arm
– Size: 1.7 x 0.8 x 1m (HxWxL) with

mast
– Speed: 6 cm/s
– Power: 570 W (Li-Ion batteries)
– Weight: 70 kg

• Instrumentation
– CHAMP: Camera, Handlens, and

Microscope Probe (Mungus / JPL)
– 6x Dragonfly cameras (navigation)
– 2x Basler area scan cameras (science)

K10 Rover
• Field work rover

– Operational tasks
(assembly, inspection, etc.)

– Human paced operations
– Same avionics and software as K9

• Characteristics
– 4-wheel steer rocker chassis
– Low-cost (COTS parts)
– Size: 0.6 x 0.7 x 1 m (HxWxL)
– Speed: 0.8 m/s (10 deg slope)
– Power: 1900 W (Li-Ion batteries)
– Weight: 100 kg (30 kg payload)

• Development
– 2004: initial build (Hsiu / Gogoco LLC)
– 2005: rev. 2 build
– 2006: locomotion redesign (Proto Innovations LLC)

Research Areas
ArchitecturePerception Interaction

Robot Software Architectures
• Almost no SW-reuse in flight software so far
• And also in space robotics research

Rising demand for reusable robotics infrastructure:
• The rising complexity of scenarios does not

allow reimplementation from scratch
• Complexity of future applications goes beyond

the scope of a single research group
• Code reuse enhances software quality
• Code reuse allows focusing on the not yet

solved problems

Why develop reusable software?

• To capture robotic domain knowledge
• To support development of generic

algorithms
• To reduce the need for resolving recurring

problems for every system
• To simplify integration of new technologies
• To use same framework for various robots
• Increase functionality by leveraging a

more mature base

Middleware for Space Robotics?

• Middleware does hardly meet today’s
requirements of flight software and
hardware
– MHz, MB RAM
– Software verification: No dynamic memory

allocation, no callbacks (virtual methods), no
large external libraries

• CLARAty-based demonstrators were flight
hardened for use on MER-rovers

CLARAty
Coupled Layer Architecture for Robotic Autonomy

CLARAty is a unified and reusable robotic software that provides
basic functionality and simplifies the integration of new
technologies on various rovers and robotic platforms

• Multi-center project
JPL, ARC, CMU

• Supports various rover platforms
Fido, Rocky 7, Rocky 8, K9, K10, (K11)

http://claraty.jpl.nasa.gov
Slides in co-operation with Issa Nesnas, JPL

NASA Develops Various Rovers

Large

Medium

Small For research & flight

Reconfigurable Robots

Would like to support …

Manipulators

COTS Systems

Custom Rovers

Problem and Approach
• Problem:

– Difficult to share software/algorithms across systems
– Different hardware/software infrastructure
– No standard protocols and APIs
– No flexible code base of robotic capabilities

• Objectives
– Unify robotic infrastructure and framework
– Capture and integrate legacy algorithms
– Simplify integration of new technology
– Operate heterogeneous robots
– Mediate between research and flight requirements

Why is robotic software “hard”?

• Software:
– Software is large and complex
– Has lots of diverse functionality
– Integrates many disciplines
– Requires real-time runtime models
– Has limited hardware resources - efficiency
– Talks to hardware

• Hardware:
– Physical and mechanics vary
– Electrical hardware architecture changes
– Hardware component capabilities vary

How?
• Study several robotic system implementations
• Study interactions of elements in various systems
• Identify reusable elements in robotic systems
• Identify implicit assumptions made
• Project potential advances to these elements
• Design a generic/flexible implementation of these

elements
• Adapt to a number of robotic systems
• Test and study the limitations of the design
• Go back to design and iterate
• Modify/extend/redesign to address limitations and

variability across systems

Your generic base is reusable

Approach

• Domain knowledge guides design
• Layers of abstraction help master complexity
• Abstractions also provide a classification of

various technology elements
• Information hiding protects implementation

variability
• Small modular components are more reusable

than monolithic blocks
• Interfaces define behavior of various elements

Things to be aware of
• Over-generalizing leads to ineffectiveness

– More general -> less functionality -> more work for
results

– Number of abstractions vs. complex hierarchies
– Modular elements with strongly typed interfaces
– Algorithm generality influences abstraction design

• Runtime models vary across systems
– Challenges in combining hardware/firmware/software

architectures in most effective manner
– Need for both cooperative and pre-emptive

scheduling

Goals
• Capture and integrate a wide range of

technologies
• Leverage existing tools
• Leverage experience and tools of the larger

software development community
• Apply appropriate design patterns to the domain
• Provide an infrastructure that enables rapid

robotic development
• Capture experience of technologists

implementations

Challenges in Interoperability

! Mechanisms and Sensors
! Hardware Architecture

Different Mobility Mechanisms

with different sensors

From wheeled Rocker-
bogies with different
steering

From three wheelers

To inflatable
wheels

To wheels on
articulated
links

From wheeled to legged

To four, six and even eight

For Example: Wheeled Locomotion

Rocky 7 Rocky 8

QuickTime™ and a
None decompressor

are needed to see this picture.

QuickTime™ and a
Video decompressor

are needed to see this picture.

QuickTime™ and a
None decompressor

are needed to see this picture.

Reusable Wheeled Locomotion Algorithms

Front
x

y
z
C

(a)
Skid Steering

(no steering wheels)

Front
x

y
z

C

(c)
Two –wheel steering

Front

x
y z

C

(e)
All wheel steering

(e.g. MER, Rocky8,
Fido, K9)

(f)
Steerable Axle
(e.g.Hyperion)

xy

z

C

(b)
Tricycle

(one steering wheel)

Front
x

y z

(d)
Partially Steerable

(e.g. Sojourner,
Rocky 7)

ATRV (a) Sojourner (d)

Rocky 8 (e)

Rocky 7 (d)

K9 (e)

FIDO (e)

General flat terrain algorithms and specialized full DOF algorithms

Manipulators and Sensor Suites
Custom Analog
Sun Sensor

3 Accels
z-axis gryo

6 DOF IMU

4 DOF Arm

4 DOF Mast

2 DOF Arm

3 DOF Mast

• Given different capabilities, how
much reuse can be achieved?

Camera Sun Sensor

QuickTime™ and a
None decompressor

are needed to see this picture.

CLARAty Architecture

THE DECISION LAYER:
Declarative model-based
Mission and system constraints
Global planning

CLARAty = Coupled Layer Architecture for Robotic Autonomy

INTERFACE:
Access to various levels
Commanding and updates

THE FUNCTIONAL LAYER:
Object-oriented abstractions
Autonomous behavior
Basic system functionality

Adaptation to a system

A Two-Layered Architecture

Simulation Hardware Drivers

Adapting to a Rover

Generic
Functional Layer

Rocky 8
Specialized

Classes
&

Objects

Connector

Decision Layer

Multi-level access Connector

Rocky 8
Models/

Heuristics

The Decision Layer

Executives
(e.g. PLEXIL)

General Planners
(e.g. CASPER)

Activity Database

Rover Models

FL Interface

Plans

• The different application scenarios provide a high degree
of variability in the design of the decision layer

• Plan centric vs. interactivity centered architectures have
different requirements on the functional layer

• The DL/FL interfacing is therefore a critical part of the
robot architecture

The Functional Layer

Transforms

Motion Control

VisionEstimation

Input/Output

Manipulation

Navigation

Communication

Math

Hardware Drivers

Locomotion

Rover

Behaviors

Path Planning

Rocky 8

Rocky 7

K9

FIDO

Science

Simulation

Sensor

Adaptations

K 10

Functional Layer Components

Pixel

MastWheeledLocLeggedLoc RBLoc

Locomotor

CoordMotors

Socket
Motor

Camera

Instrument

BBMotorControlledMotor

Analog_IODigital_IO

IO

VisualNavigatorVisualTracker

Array_2D

Vector Location Point

Matrix

ImageColorImage HTrans

FeatureDetectorCorrelator

BehaviorState

Database Bit

Resource

Rover

SocketMsg

Manipulator

Arm

StereoGen

Specialized Data Structures

General Purpose Data Structures

Standard Template Library
String

LinkedList

Container

Waypoint

Path
Camera Image

Location

Connector

Abstraction Models

CLARAty Abstractions
• Generic Physical Components (GPC)

– Locomotor, Arm, Mast,
• Specialized Physical Components

(SPC)
– K9_Locomotor, K9_Arm, R8_Mast

• Generic Functional Components (GFC)
– ObjectFinder, VisualNavigator,

Stereovision, Localizer
• Specialized Functional Components

(SFC)

Generic Technologies & Algorithms

• Technologies that are generic by design should
not be constrained by the software architecture
& implementation

• Non-generic technologies should be
accommodated on the appropriate platforms
– Example (Generic): if you are working in navigation,

you would not care about H/W architecture difference
among different rovers

– Example (Specific): if you are doing wheel/terrain
interaction research, you might require specific
hardware which one of the vehicles would support

• Assumptions are made explicit

Wheel Locomotor Example

Capabilities of Wheel Locomotor

• Type of maneuvers:
– Straight line motions (fwd / bkwd)
– Crab maneuvers
– Arc maneuvers
– Arc crab maneuvers
– Rotate-in-place maneuvers (arc turn r=0)

• Driving Operation
– Non-blocking drive commands
– Multi-threaded access to the Wheel_Locomotor class – e.g. one

task can use Wheel_Locomotor for driving while the other for
position queries

– Querying capabilities during all modes of operation. Examples
include position updates and state queries

– Built-in rudimentary pose estimation that assumes vehicle
follows commanded motion

• Wheeled Locomotion – works for Rocky 8, Rocky 7, Fido, K9,
...

Front

x
y

z

C

(a)
Skid Steering

(no steering wheels)

x

y
z

C

(b)
Tricycle

(one steering wheel)

Front

x

y zC

(d)
Partially Steerable

(e.g. Sojourner,
Rocky 7)

Front

x

y z
C

(e)
All wheel steering

(e.g. MER, Rocky8,
Fido, K9)

Front

x

y
z

C

(c)
Two –wheel steering

Generic Reusable Algorithms

R7 Specific Rover Implementation

MastWheeledLocLeggedLoc RBLoc

Locomotor

CoordMotionSystem

Motor

BBMotorControlledMotor

Analog_IODigital_IO

IO

Manipulator

Arm

R7_Arm R7_Mast

Implements general fwd &
inv. kinematics & joint ctrl

•Specialized inv. Kinematics (overrides default)
•Attaches proper motors
•Attaches proper cameras for mast
•Adds filter wheel

R7_Locomotor

•Attaches proper motors
•Restricts Steering to 2 wheels

LM629Chip
LM629Motor

R7_Rover

R7_Arm

R7_MastR7_Locomotor

R7

Device Drivers

VPAR10Board

Non reusable Code Reusable Code

R8 Specific Rover Implementation

MastLeggedLoc Wheeled Locomotor

Locomotor

CoordMotionSystem

Motor

BBMotorControlledMotor

Analog_IODigital_IO

IO

Manipulator

Arm

R8_Arm R8_Mast

Implements general fwd &
inv. kinematics & joint ctrl

•Specialized inv. Kinematics (overrides default)
•Attaches proper motors
•Attaches proper cameras for mast
•Adds filter wheel

R8_Locomotor

•Attaches proper motors
•Restricts Steering to 2 wheels

R8_Motor

R8_Rover

R8_Arm

R8_MastR8_Locomotor

R8

Widget Board

Widget AIOWidget DIO

Widget Motor HCTL 1100 Chip

Non reusable Code Reusable Code

Trajectory

Trajectory_Generator
Timers

Analysis of amount of reusable code across implementations:

-Reusable131Point 2D
Reusable2080Controlled Motor

-Reusable1083Matrix, Vector, Array

Rotation Matrix, Point 2DReusable341Location, Homogeneous Transforms

-Reusable435Rotation Matrices

584 (non-reusable)

Non-reusable
Non-reusable

Reusable

Reusable

Reusable

Status

Widget Motor, etc...
Rocky 8 Motor

-

Vector

Motion Sequence, 1D Solver,
Homogeneous Transforms

Depends On

~92%Total Reusable
6995Total
334Rocky 8 Motor
250Rocky 8 Locomotor

3561D Solver

540Motion Sequence

1445Wheel Locomotor

Lines of CodeModule

Code Reusability Results

Motor Example

Example: Generic Controlled
Motor

• Define generic capabilities
independent of hardware

• Provide implementation for generic
interfaces to the best capabilities of
hardware

• Provide software simulation where
hardware support is lacking

• Adapt functionality and interface to
particular hardware by specialization
inheritance

• Motor Example: public interface
command groups:
– Initialization and Setup
– Motion and Trajectory
– Queries
– Monitors & Diagnostics

Time

Ve
lo

ci
ty

S- Profile

Instantaneous Profile Change

Comparing Different Implementations

Controlled_Motor_Impl

ControlledMotor

Linear_AxisJoint

Non-Resuable Layer R8_MotorR7_MotorFido_Motor Sim_Motor

Trajectory

Trajectory_Generator

Mz<Type>

HCTL_Chip

LM629_Chip

Widget_Board
R7_MC_Board

Widget_Motor

PID_Servo

• Actual Examples of Code Reusability for Hardware modules:
– Controlled Motor Hierarchies for Rocky 8 and Rocky7

~95%Total Reusable

334 (non-reusable)6380Total

~52%Total Reusable – Strict

Reusable –
widget

383Widget Motor

Reusable – I2C1446I2C Master

Reusable – HCTL900Motor Controller HCTL

Non-reusable334Rocky 8 Motor
Reusable756Bits
Reusable143Resources (Timers, etc)
Reusable338Trajectory Generator
Reusable2080Controlled Motor

StatusLines of
Code

Module

Reusable – VPAR10534VPAR10 Parallel I/O

546 (non-reusable)5636Total
~90%Total Reusable

Non-reusable131Rocky 7 I/O Maps
Non-reusable415Rocky 7 Motor

~63%Total Reusable – Strict

Reusable – LM6291014Motor Controller LM629

Reusable706Input Output
Reusable756Bits
Reusable2080Controlled Motor

StatusLines of
CodeModule

y
Modules

Rocky 8 Rocky 7

Solaris/Linux

Motorola 68K

Intel x86

Ames

JPL

CMU

Rocky 8

Intel x86

VxWorks

VxWorks

Linux

Rocky 7

K9

JPL

ROAMS

JPL

Linux

Intel x86

JPL AI
Solaris CC

Currently Supported Platforms

Ames
Intel x86

Linux

K10

Future Plans
• Open Source Release
• Flexible, freely configurable locomotion

system and mechanisms model
• CORBA based functional Layer/Decision

Layer interfacing
• Extend the architecture to the

requirements of the challenges of Lunar
Robotics

Mars Rovers
CLARAty design originates primarily in Marsian scenarios:
• Communication delay requires high amount of autonomy
• Very limited system resources
• No interaction possible

" An extremely autonomous mobile rover system

Scenario assumptions:
• Single rover in an otherwise static world
• Limited communication (up/down-link based)
• Operation speed vs. operation safety tradeoff

" Limited reactivity

Lunar Challenges
• High Bandwidth, low latency links

– Extensive communication
– Limited teleoperation
– Supervisor feedback augments autonomy

• Multiple robots
– Team communication
– Multi-robot cooperation

• Human robot interaction
– Safety requirements
– Speed requirements
– Reactivity requirements
– Single actor assumption breaks
– Flexible task allocation

Summary
• Space is a challenging application area for mobile robots
• CLARAty provides a repository of reusable software

components at various abstraction levels
• It captures well-known robot technologies in a basic

framework for researchers
• It allows researchers to integrate novel technologies at

different levels of the architecture
• It is a collaborative effort within the robotics community
• It runs on multiple heterogeneous robots
• The lunar mission provides new challenges for CLARAty

Acknowledgements

CLARAty Team (multi-center)

Jet Propulsion Laboratory

Ames Research Center

Carnegie Mellon University

Thank you very much for your
attention!

